

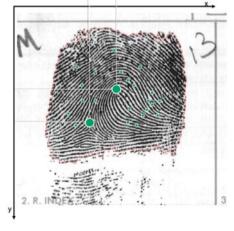
Conformance to Standardized Minutia **Detection Requirements**

Christoph Busch and Sebastian Abt

Hochschule Darmstadt Center for Advanced Security Research Darmstadt

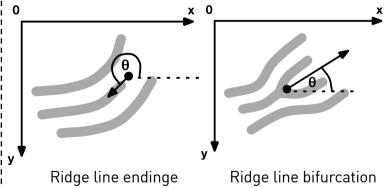
> IBPC 2012 NIST - March 6-8,.2012

Conformance to Standardized Minutia Detection Requirements

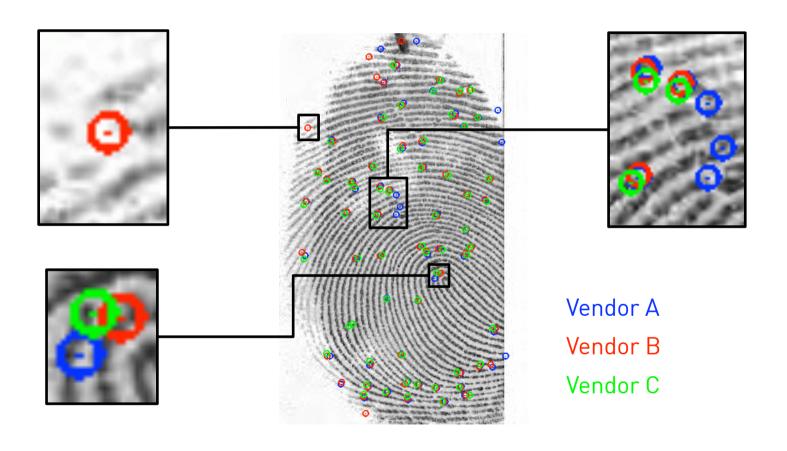

MOTIVATION

HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

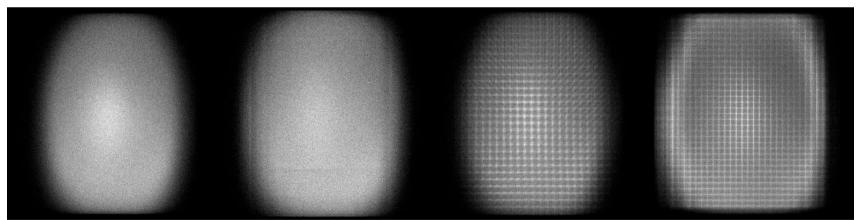
Motivation


Minutiae Templates

- 1. Fingerprint image (biometric sample) after acquisition as generated by capture device.
- 2. Features
 (minutiae) as
 identified during
 feature
 extraction
 process.


- 3. Biometric template encoding. According to ISO/IEC 19794-2:
 - 1. Minutia x-coordinate
 - 2. Minutia y-coordinate
 - 3. Minutia angle θ
 - 4. Minutia type t
 - 5. Minutia quality q

$$m = \langle x, y, \theta, t, q \rangle \in \mathcal{M}$$


Minutiae Detection Deficiency

Minutiae Misplacement

- MINEX results presented at BIOSIG 2009
 - 2D histogram of minutiae locations
 - Angle and type information ignored

(Source: Tabassi et al., BIOSIG2009)

Conformance Testing

• ISO/IEC 29109-x: Conformance testing methodology for biometric data interchange formats defined in ISO/IEC 19794-x:

– Level 1: Data format conformance

– Level 2: Internal consistency checking

– Level 3: Content checking

Conformance Testing

- ISO/IEC 29109 Part2: Finger minutiae data
- ISO/IEC 29109-2 AMD1: Semantic conformance testing - Part2: Finger minutiae data
 - Scope: tests of semantic assertions
 Type A Level 3 as defined in ISO/IEC 29109-1:2009

	ISO IEC	ISO/IEC JTC 1/SC 37 N 4834			
		ISO/IEC JTC 1/SC 37			
		Biometrics			
	Secretariat: ANSI (USA)				
	Document type:	Other document (Defined)			
Marcl	Title:	Text for 29109 2 minutia level three amendment WD4			

Conformance Testing

• ISO/IEC 29109-2 AMD1:

- "The reason these tests are necessary is because in practice minutia detectors sometimes
 - fail to properly place a minutia
 - detect a false minutia within the ridge structure of a parent fingerprint;
 - detect a false minutia outside or at the periphery of an image of the parent fingerprint
 - fail to detect a minutia within the fingerprint data
 - fail to determine type correctly
 - fail to measure angle correctly "

Conformance Testing

• ISO/IEC 29109-2 AMD1 (SC37N4834):

Clause 7.4 Minutiae conformance measure

MINUTIA_CONFORMITY
$$(r,t) = (1-p)H(W/4-d)$$

Clause 7.5 Out-of-area test

OUTSIDE
$$(T) = \frac{1}{N} \sum_{i=1}^{N} MPS(t_i)$$

Clause 7.6 False minutia test

TRUE_MINUTIA_FRACTION
$$(R, T) = 1 - \frac{NI_T}{N_T}$$

Conformance to Standardized Minutia Detection Requirements

REVISED PERSECTIVE ON SEMANTIC CONFORMANCE TESTING

Semantic Conformance Testing

Minutiae Sets

- Level 3: Content checking
 - "to test that the BDIRs produced by an IUT are faithful representations of the original biometric data and that they satisfy those requirements of the base standard that are not simply a matter of syntax and format [...]" (ISO/IEC 29109-1)
- Strict (loose) definition of ,faithfulness'
 - "A biometric template resulting from a noise-free and linear transformation applied to the input biometric charachteristic's (sample's) traits."
 - Faithfulness in strict sense desired
 - Faithfulness in loose sense measured, due to non-linear physical effects during data acquisition

Semantic Conformance Testing

Formalisation

Faithfulness

- Modeled as continuous function
- With reference set R_i and test set
- Measured at minutiae-level
 - Per attribute equality
 - No addition of spurious minutiae

Computation Model

- For a set of feature extractors
- compute conformance rates
- based on a reference data set
- and on definition of faithfulness

$$\mathcal{F}: \mathcal{M} \times \mathcal{M} \to \mathbb{R}, \mathcal{F}(R_i, T_{k,i})$$

$$m \in R_i, m' \in T_{k,i}$$

$$\forall \psi \in \{x, y, \theta, t\} : \psi =_{\mathcal{R}} \psi'$$

$$|R_i| = |T_{k,i}|$$

$$\mathcal{SCM} = (\mathcal{A}, GTM, \mathcal{F}, CR_{max})$$

$$\forall A_k \in \mathcal{A} :$$

$$CR(A_k) =$$

$$\frac{1}{N_{GTM}} \sum_{i=1}^{N_{GTM}} (\omega_i \cdot$$

$$\mathcal{F}(R_i, T_{k,i}))$$

h_da

Semantic Conformance Testing

Reference Data Set

Ground-Truth Minutiae

$$GTM, N_{GTM} = |GTM|$$

Consists of triplets

 (P_i, R_i, ω_i)

Biometric sample

 P_i

Reference template

 R_i

Weight

 ω_i

- Based on biometric samples of NIST special databases SD14 and SD29
- Samples manually analyzed by dactyloscopic experts of BKA
- Results in a scattered set of ground truth minutiae per biometric sample
 - **⇒** Sample fusion?

Semantic Conformance Testing

Testing Methodologies

- Explicit Fusion Methodology
 - Requires explicit data fusion process
 - Computes harmonized samples from scattered expert data see
 a) presentation at IBPC 2010:

http://biometrics.nist.gov/cs_links/ibpc2010/pdfs/Busch_Christoph_IBPC2010-gtm-100224.pdf b) presentation by Sebastian Abt at BIOSIG 2010:

http://www.christoph-busch.de/files/Abt-FingerMinutiaeClustering-BIOSIG-2010.pdf

- Implicit Fusion Methodology
 - Implicit fusion during conformance rate computation where references R_{kd} are generated by d=1,...,D dactyloscopic experts
 - Requires adjusted weights
 - Uses scattered samples as-is
- Known-Truth Methodology
 - Utilizes synthetically generated data

Semantic Conformance Testing

A Quality-score Honoring Approach

- Minutiae quality scores
 - Valued 0 ≤ q ≤ 100 according to ISO/IEC 19794-2
 - Can be interpreted as confidence value
 - Usage of minutiae quality is controversially discussed in SC37 as no standardized method for determination exists
 - However, standardization of minutiae quality not required
- Quality-score honoring instance
- Function to measure faithfulness
 - Addresses minutiae misplacement and
 - spurious minutiae placement problems
 - Honores minutiae quality values

$$\mathcal{SCM}_{QBL} = (\mathcal{A}, GTM, \mathcal{F}_{QBL}, 1)$$

$$\mathcal{F}_{QBL}(R_i, T_{k,i}) =$$

$$\lambda_1 \gamma_1(R_i, T_{k,i}) +$$

$$\lambda_2 \gamma_2(R_i, T_{k,i})$$

Semantic Conformance Testing

Minutiae Misplacement Problem

- Quantifies degree to which automatically generated minutiae deviate from ground-truth minutiae
- Equally penalizes location, angle and type differences
- Penalty weighted according to minutiae reliability

$$\gamma_1(R_i, T_{k,i}) = \frac{1}{|R_i|} \sum_{j=1}^{|R_i|} (1 - (1 - faith(m_j, m'_j))e^{-(1 - \frac{q'_j}{100})})^2$$

Quality-weighted faithfulness

Quality-weighted faithfulness

Quality-weighted faithfulness

Quality-weighted faithfulness

Office of the property of the prop

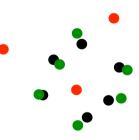
$$faith(m_j, m'_j) = \begin{cases} 0, & \text{if } d_2(m_j, m'_j) > tol_d \\ f_j, & \text{otherwise} \end{cases}$$

$$f_j = \frac{s_j^{\Delta d} + s_j^{\Delta \theta} + s_j^{\Delta t}}{3}$$
$$s_j^{\Delta d} = \frac{tol_d - d_2(m_j, m_j')}{tol_d}$$

$$s_{j}^{\Delta\theta} = \frac{\pi - \min\{2\pi - |\theta_{j} - \theta'_{j}|, |\theta_{j} - \theta'_{j}|\}}{\pi}$$

$$s_{j}^{\Delta t} = \begin{cases} 1, & \text{if } t_{j} = t'_{j} \\ 0, 25, & \text{if } t_{j} \neq t'_{j} \text{ and } t_{j} \text{ is unknown} \\ 0, & \text{otherwise} \end{cases}$$

Semantic Conformance Testing


Spurious Minutiae Problem

- Compute ratio of spurious minutiae
 - no distinction between "out of fingerprint area" and "inside"
- Weighted according to minutiae reliabilities

$$\gamma_2(R_i, T_{k,i}) = 1 - \frac{1}{|T_{k,i}|} \sum_{j=1}^{|S_{k,i}|} \frac{q_j'}{100}$$

$$S_{k,i} = \{ m' \in T_{k,i} | \nexists m \in R_i : d_2(m, m') \le tol_d \}$$

reference minutiae spurious minutiae mated minutiae

Assessing Semantic Conformance of Minutiae-based Feature Extractors

EVALUATION AND RESULTS

h_da HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

Evaluation and Results

Environment

- Development of feature extractors and comparators using 3 SDKs
- Computation of 162 DET curves
- Analysis of 3294 biometric samples
- Creation of 12661 biometric templates
- Computation of 34,6M comparison scores

March 8, 2012

19

Evaluation and Results

Real World Correlation

- Comparison of CRs and avg. non-native equal error rates (nnEER)
- nnEER estimate of real-world inter-vendor performance:
 - Average of equal error rates in non-native case,
 - \perp i.e. using probe templates from V_x and reference templates from V_y

$$nnEER_{\phi} = \frac{1}{2(|\mathcal{V}|-1)} \sum_{\psi \in \mathcal{V} \setminus \{\phi\}} (EER_{\phi,\psi} + EER_{\psi,\phi})$$

$$\mathcal{V} = \{A_{V_A}, A_{V_B}, A_{V_C}\}$$

avg. EER	A_{V_A}	A_{V_B}	A_{V_C}	
A_{V_A}	0.0415	0.0459	0.0493	
A_{V_B}	0.0455	0.0428	0.0519	
A_{V_C}	0.0495	0.0516	0.0376	
(a)				

IUT	nnEER	$CR_{QBL}(\cdot)$
A_{V_A}	0.0476	0.6214
A_{V_B}	0.0488	0.5133
A_{V_C}	0.0506	0.4039
		(b)

HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

Evaluation and Results

Real World Correlation

- Comparison of CRs and avg. non-native equal error rates (nnEER)
- nnEER estimate of real-world inter-vendor performance:
 - Average of equal error rates in non-native case,
 - \perp i.e. using probe templates from V_x and reference templates from V_y

$$nnEER_{\phi} = \frac{1}{2(|\mathcal{V}|-1)} \sum_{\psi \in \mathcal{V} \setminus \{\phi\}} (EER_{\phi,\psi} + EER_{\psi,\phi})$$
$$\mathcal{V} = \{A_{V_A}, A_{V_B}, A_{V_C}\}$$

- Benchmarked using non quality honoring approach (SCM_{BL}) described in
 - Lodrova, Busch, Tabassi, Krodel, Drahansky. "Semantic Conformance Testing Methodology for Finger Minutiae Data". In Proceedings of BIOSIG, 2009.

avg. EER	A_{V_A}	A_{V_B}	A_{V_C}	
A_{V_A}	0.0415	0.0459	0.0493	
A_{V_B}	0.0455	0.0428	0.0519	
A_{V_C}	0.0495	0.0516	0.0376	
(a)				

	IUT	nnEER	$CR_{QBL}(\cdot)$	$CR_{BL}(\cdot)$	
	A_{V_A}	0.0476	0.6214	0.6285	
	A_{V_B}	0.0488	0.5133	0.6295	
	A_{V_C}	0.0506	0.4039	0.6192	
_	(b)				

Evaluation and Results

Testing Methodologies

- Evaluation of implicit vs. explicit fusion methodologies
- Evaluation shows that both methodologies lead to comparable results
- Explicit clustering not necessary!

	Implicit fusion			Explicit fusion		
	$\gamma_1(R_i, T_{k,i})$	$\gamma_2(R_i, T_{k,i})$	$CR(\cdot)$	$\gamma_1(R_i, T_{k,i})$	$\gamma_2(R_i, T_{k,i})$	$CR(\cdot)$
A_{V_A}	0.483	0.795	0.639	0.409	0.834	0.621
A_{V_B}	0.414	0.614	0.514	0.352	0.674	0.513
A_{V_C}	0.345	0.444	0.394	0.289	0.518	0.403

Assessing Semantic Conformance of Minutiae-based Feature Extractors

CONCLUSION AND FUTURE WORK

h_da HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

Conclusion and Future Work

Conclusion and Contribution

- Semantic conformance computation based on formal definition of faithfulness
- Plausibility testing yields reasonable results
- Conformance rates of quality honoring approach correlate with real-world inter-vendor performance estimates
- Explicit clustering not necessary
- Contribution
 - Integration of ideas into ISO/IEC 29109-2 AMD1
 - Abt, Busch, Baier. "A quality-score honoring approach to semantic conformance assessment of minutiae-based feature extractors". In Proceedings of BIOSIG 2011, pp. 21-32, 2011.

A copy is available at:

http://www.christoph-busch.de/standards-gtd.html

Conclusion and Future Work

Future Work

- ISO/IEC 29109-2 AMD1 requires further contributions
- What is a common definition of a markup?
 - a) an automated SDK generated minutia?
 - b) a minutia generated by an individual (i.e. a dactyloscopic expert)
 - c) any minutiae either a) or b)
- Need for Semantic Conformance Computation Challenge (SC3)
 - Stronger evaluation (more templates and algorithms)
 - in cooperation with NIST

HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES Thanks to...

Elham Tabasssi Martin Olsen Patrick Grother

Raffaelle Cappelli

Wolfgang Krodel

Timo Ruhland

h_da

HOCHSCHULE DARMSTADT
UNIVERSITY OF APPLIED SCIENCES

Contact

h_da HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

Prof. Dr. Christoph Busch

Principal Investigator | Research Area: Secure Things

CASED

Mornewegstr. 32

64293 Darmstadt/Germany

christoph.busch@cased.de

Telefon

+49 6151/16 9444

Fax

www.cased.de